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Abstract—We describe a paradigm for designing paral-
lel algorithms via approximation, and illustrate it on the
b-EDGE COVER problem. A b-EDGE COVER of minimum weight
in a graph is a subset C of its edges such that at least a
specified number b(v) of edges in C is incident on each vertex
v, and the sum of the edge weights in C is minimum. The
GREEDY algorithm and a variant, the LSE algorithm, pro-
vide 3/2-approximation guarantees in the worst-case for this
problem, but these algorithms have limited parallelism. Hence
we design two new 2-approximation algorithms with greater
concurrency. The MCE algorithm reduces the computation of a
b-EDGE COVER to that of finding a b′-MATCHING, by exploiting
the relationship between these subgraphs in an approximation
context. The S-LSE is derived from the LSE algorithm using
static edge weights rather than dynamically computing effective
edge weights. This relaxation gives S-LSE a worse approxima-
tion guarantee but makes it more amenable to parallelization.
We prove that both the MCE and S-LSE algorithms compute
the same b-EDGE COVER with at most twice the weight of the
minimum weight edge cover. In practice, the 2-approximation
and 3/2-approximation algorithms compute edge covers of
weight within 10% the optimal. We implement three of the
approximation algorithms, MCE, LSE, and S-LSE, on shared
memory multi-core machines, including an Intel Xeon and an
IBM Power8 machine with 8 TB memory. The MCE algorithm
is the fastest of these by an order of magnitude or more. It
computes an edge cover in a graph with billions of edges in 20
seconds using two hundred threads on the IBM Power8. We
also show that the parallel depth and work can be bounded
for the SUITOR and b-SUITOR algorithms when edge weights
are random.

Keywords-b-EDGE COVER; b-MATCHING; Approximation Al-
gorithms; Parallel Algorithms.

I. INTRODUCTION

We consider a paradigm for designing practical parallel

algorithms for certain graph problems through approxi-

mation algorithms. Algorithms for solving these problems

exactly are impractical for massive graphs, and possess

little concurrency. Often approximation algorithms can solve

such problems faster in serial, but to take advantage of

parallelism, new algorithms that possess high degrees of

concurrency need to be designed.
We illustrate this paradigm by considering the minimum

weight b-EDGE COVER problem, where the objective is to

choose a subset of edges C in the graph such that at least
a specified number b(v) of edges in C is incident on each

vertex v. Subject to this restriction on the subset of edges,

we minimize the sum of the weights of the edges in C.

The closely related maximum weight b-MATCHING problem

chooses a subset of at most b(v) edges incident on each

vertex v to include in the matching, and then we maximize

the sum of the weights of the matched edges. We will

describe the complementary relationship between these two

problems for approximation algorithms.

The paradigm of designing approximation algorithms for

parallelism has been considered in the theoretical computer

science community for vertex and set cover problems by

Khuller, Vishkin and Young [14], and for facility location,

max cut, set cover, and low stretch spanning trees, by

Blelloch, Tangwongsan and coauthors, e.g., [3], [22]. The

idea underlying many of these parallel algorithms is that

a greedy algorithm chooses a most cost-effective element

in each iteration, and by allowing a small slack, a factor of

(1+ε), more elements can be selected at the cost of a slightly

worse approximation ratio. These are algorithms with poly-

logarithmic depth, and although some of them have linear

work requirements, there are no parallel implementations

that we know of.

The approximation paradigm for parallelism has been

previously employed for MATCHING and b-MATCHING

problems. The GREEDY algorithm for MATCHING does

not have much concurrency, and Preis [19] developed the

Locally Dominant edge algorithm, which was implemented

for shared-memory parallel machines by Manne and Bis-

seling [16]. Manne and Halappanavar [17] developed the

SUITOR algorithm, which has even more concurrency at

the expense of annulled proposals, and this algorithm was

extended to the b-SUITOR algorithm for b-MATCHINGS on

both shared-memory and distributed-memory computers by

our group [12], [13]. Azad et al. [1] have applied a 2/3− ε-
approximation algorithm for weighted perfect matchings

in bipartite graphs to compute good orderings for sparse

Gaussian elimination.

The minimum weight b-EDGE COVER problem is rich in

the space of approximation algorithms, and we consider four

such algorithms here. A GREEDY algorithm and a variant,

the LSE (locally subdominant edge) algorithm that we have

designed earlier, have 3/2-approximation ratios. Since these
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algorithms do not have much parallelism, we describe new

2-approximation algorithms that are more concurrent. We

implement the new approximation algorithms on a multicore

shared-memory multiprocessor, and compare their perfor-

mance with the earlier 3/2-approximation algorithms for this

problem. Thus we trade off increased parallel performance

for a slightly higher worst-case approximation ratio. We

show that in practice nearly minimum weight edge covers

are obtained. In the next few paragraphs, we add more detail

to these statements.

The GREEDY algorithm for the b-EDGE COVER problem

requires the effective weight of each edge, which is the

weight of the edge divided the number of its endpoints that

do not yet have their b(.) values satisfied by edges included

in the cover. Thus initially this is half the weight of an edge

(u, v); it could then equal the weight of the edge, or become

infinite when the b(v) values of one or both of its endpoints

are satisfied. At each iteration, an edge with the minimum

value of the effective weight is added to the cover, and

the weights of neighboring edges are updated. The order

in which the edges are added to the cover and the dynamic

updates of the edge weights cause the algorithm to be not

amenable to parallelization.

Earlier, we have proposed a 3/2-approximation algorithm

called the LSE algorithm [11], which relaxes the order

in which edges are added to the cover, making it more

concurrent. An edge (u, v) is locally sub-dominant if it

has the minimum weight among all edges incident on its

endpoints u and v. The LSE algorithm adds a locally sub-

dominant edge to the cover, deletes this edge from the

graph, updates the effective weights of neighboring edges,

and updates the b(.) values of its endpoints. The algorithm

iterates until all b(.) values are satisfied. Unfortunately, the

dynamic weight update in the LSE algorithm makes the

parallel implementation inefficient. If we work with the

static edge weights instead of the dynamic effective weights,

we obtain a 2-approximation guarantee, while significantly

improving the run time performance and scalability. We call

this algorithm S-LSE, i.e., LSE with static edge weights and

no effective weight update, and this is a new contribution

in this paper. The S-LSE algorithm iteratively adds a set of

locally sub-dominant edges to the current edge cover.

Our earlier paper [11] discusses the GREEDY and LSE

algorithms in detail. Both algorithms have the effective

weight update step in common, and this weight update step

takes 85%− 90% of total time for the LSE algorithm. The

reason is that in any given iteration, the edges whose weight

need to be updated reside in different parts of the graph,

making the memory accesses for weight updates irregular,

causing loss of performance.

A major contribution of this paper is to describe a

new 2-approximation algorithm, the MCE algorithm for

b-EDGE COVER that first computes a b′-MATCHING, and

then takes the complement of the matched edges. (The value

of b′(v) = deg(v) − b(v), where deg(v) is the degree of

a vertex v.) There is a complementary relationship between

these problems in the context of optimal matchings and edge

covers, and we extend it to approximate solutions, discuss

the condition under which this relationship holds, and use it

to design the MCE algorithm.

We design parallel versions of the LSE, S-LSE and MCE

algorithms, and compare the run time performances of these

algorithms on Intel Xeon and IBM Power8 multiprocessors.

We show that the MCE algorithm is the fastest among these

algorithms both on serial and shared memory multi-threaded

processors, outperforming others by at least an order of

magnitude. The MCE algorithm employs the b-SUITOR al-

gorithm for computing a b′-MATCHING; the latter algorithm

scales to 16K cores of a distributed memory machine [13].

We show here that b-EDGE COVERS in a graph with billions

of edges can be computed in seconds with a Terabyte-scale

shared memory machine using hundreds of threads.

The rest of this paper is organized as follows. We provide

background on the b-EDGE COVER problem and its relation

to matchings in Section II. In Section III, we discuss our

proposed 2-approximation algorithms S-LSE and MCE.

Parallel implementations of these algorithms are described

in Section IV. The worst-case approximation guarantee of 2
for the MCE algorithm, and that the MCE and the LSE

algorithms compute the same edge cover, are proved in

Section V. The parallel depth and work of the SUITOR and

b-SUITOR algorithms on which the MCE algorithm depends,

are included in Section VI. Our experiments and results are

described in Section VII, and we conclude in Section VIII.

II. BACKGROUND

The well-known k-nearest neighbor graph construc-

tion to represent noisy and dense data is related to

the b-EDGE COVER problem. The formulation as a

b-EDGE COVER problem is more general, since instead of

using a uniform value of b, we can choose b(v) to depend on

each vertex v. Furthermore, as the work in this paper shows,

this construction creates redundant edges which may be

removed to obtain a sparser graph while satisfying the b(v)
constraints. Finally, our work shows that this construction

creates a subgraph whose weight can be proved to be at

most twice the minimum weight obtainable. We explore this

relationship in more detail in [20], and focus here on the

MCE and S-LSE algorithms.

The b-EDGE COVER problem arises in communication

or distribution problems where reliability is important, i.e.,

each communication node has to be “covered” several times

to increase reliability in the event of a communication

link failing [15]. We have also used a b-EDGE COVER

to solve the adaptive anonymity problem [6], where we

wish to publish a database, with individuals corresponding

to rows, features corresponding to columns, and we mask

a few elements before publication in order to satisfy the
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privacy requirements of individuals. (Although [6] uses

b-MATCHINGS for k-anonymity, we have shown that it is the

b-EDGE COVER problem that should be used for adaptive

anonymity.)

An exact algorithm for the minimum weight

EDGE COVER problem can be obtained by reducing

it to the minimum weight perfect MATCHING problem,

as described in Schrijver [21]. This reduction makes a

second copy of the original graph G, and then connects

corresponding vertices in the two copies by an edge with

weight equal to twice the minimum weight of an edge

incident on the vertex in the original graph. (We call these

edges linking edges). A minimum weight perfect matching

in the latter can be transformed to a minimum weight edge

cover in the original graph by including the matched edges

in the original graph, and replacing every matched linking

edge by a lowest weight edge incident on that vertex.

Let b(V ) =
∑

v∈V b(v), β = maxv∈V b(v), n denote

the number of vertices, and m denote the number of

edges in a graph. An exact algorithm for b-MATCHING has

O(b(V ) m log n) time complexity, but this is impractically

slow for large graphs, and it does not have much concur-

rency. There have been no practical parallel algorithms and

implementations for b-EDGE COVER in earlier work.

A minimum weight b-EDGE COVER can be computed as

the complement of a b′-MATCHING, as described in the

Introduction. In earlier work, we have developed a 1/2-

approximation algorithm for b-MATCHING called b-SUITOR,

which is related to proposal based algorithms for the Stable

Fixtures problem, a variant of stable matchings. The serial

b-SUITOR algorithm has time complexity O(m log β), and

it is currently the fastest practical algorithm on serial, shared

memory, and distributed memory machines, scaling to 16K
cores or more [12], [13]. On serial machines, the b-SUITOR

algorithm is several orders of magnitude faster than earlier

exact algorithms for b-MATCHING; it is about 900 times

faster than an integer linear programming algorithm and 300
times faster than a belief propagation algorithm. We employ

the b-SUITOR algorithm to compute b-EDGE COVERS in this

paper, and hence will discuss it in more detail later.

The b-EDGE COVER problem is a special case of the

Set Multicover problem: Here we are given a collection of

subsets of a set, each with a cost, and we are required to

find a sub-collection of subsets of minimum total cost to

cover each element e in the set a specified number b(e)
times. If each subset has exactly two elements, then we have

the b-EDGE COVER problem. Chvatal [7] obtained an Hn

approximation algorithm for the minimum cost Set Cover
problem, where Hn is the n-th harmonic number. Dobson

[9] proposed an Ha-approximation algorithm using integer

programming for the minimum cost Set Multicover problem,

where a is the maximum number of elements in any subset.

III. NEW 2-APPROXIMATION ALGORITHMS

In this section, we introduce two 2-approximation algo-

rithms: i) S-LSE is the LSE algorithm without the effective

weight update step, and ii) MCE, the matching complement

edge cover algorithm, uses a b′-MATCHING to compute a

b-EDGE COVER.

A. S-LSE: LSE with no weight update

The S-LSE algorithm iteratively computes a set of locally

sub-dominant edges to add to the edge cover. Ties are broken

by prioritizing an edge with lower numbered endpoints.

In each iteration locally sub-dominant edges are uniquely

defined, and are independent of each other, i.e., they do not

share an endpoint. The algorithm iteratively finds a set of

locally sub-dominant edges, adds them to the edge cover and

updates b(v) values. These edges are marked as deleted from

the graph, and new locally dominant edges are identified. If

both endpoints of an edge have their b(v) values satisfied,

then it is marked as deleted from the graph. The algorithm

is described in Algorithm 1.

At each iteration, we calculate the set of locally sub-

dominant edges S as follows. Each vertex u sets a pointer

to the edge of least weight incident on it. If the end-

points of an edge point to each other, then the edge is

locally sub-dominant. We pick each such edge, add it to the

cover, remove it from further consideration, and decrement

the b(v) values of the end points. When the b(.) values

are satisfied for all vertices, we break the loop and then

do a post-processing step called the Redundant Edge Re-
moval step, which is described in the following subsection.

After the post-processing, the algorithm terminates with a

b-EDGE COVER, EC. The time complexity of the (serial)

algorithm is O(m logΔ), where Δ is the maximum degree

of a vertex.

Algorithm 1 S-LSE(G(V,E,w), b)

1: EC = ∅
2: while b(.) constraints are not satisfied do
3: Compute locally sub-dominant edges S of G
4: for each (u, v) ∈ S do
5: EC = EC ∪ (u, v)
6: E = E \ (u, v)
7: for x ∈ {u, v} do
8: if b(x) > 0 then
9: b(x) = b(x)− 1

10: EC =Remove Redundant Edge(EC)

11: return b-EDGE COVER EC

1) Redundant Edges: We define a vertex u to be sat-
urated if u is covered by exactly b(u) edges, and super-
saturated if u is covered by more than b(u) edges in a

b-EDGE COVER C. An edge u, v ∈ C is redundant if both u
and v are super-saturated. The GREEDY, LSE and S-LSE
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algorithms may have redundant edges. We can remove a

redundant edge (u, v) without violating the constraints on

b(.) and reduce the weight of the edge cover.

We illustrate redundant edges by an example shown in

Figure 1(a). We show a b-EDGE COVER computed using

S-LSE algorithm before the post-processing step on a graph

G, with b(u) = b(v) = b(w) = b(x) = b(y) = 1, and all

other vertices have b(.) = 2. It shows that all the edges will

be selected to be part of the edge cover. Figure 1(b) shows

the subgraph induced by the super-saturated vertices with

the redundant edges. If we remove (a, b) first, we can either

remove (c, d) or (d, e) without violating the constraints and

the resulting two possible solutions with their respective

cover weights are shown in Figure 1(c). This illustrates

that the order in which the algorithm removes redundant

edges could determine the edge cover and its weight. This

is not desirable in a parallel context because each vertex

will be processed by different threads, and the scheduling

of the threads depends on the underlying operating system.

Therefore, the solution may be different from one run to

another. We also want to remove heavier edges to obtain a

solution with the lowest possible weight.

We achieve both of these goals by removing locally

dominant edges in the subgraph induced by the redundant

edges. An edge u, v is a locally dominant edge if its weight

is maximum relative to the weights of all neighboring edges.

Similar to locally sub-dominant edges, with a consistent tie-

breaking scheme, the set of locally dominant edges is also

uniquely defined, i.e., it does not depend on the order in

which one processes a vertex. We consider the subgraph

induced by the redundant edges [Figure 1(b)], and iteratively

remove locally dominant edges. In the example described in

Figure 1(b), (b, c) and (d, e) are locally dominant edges. The

removal of these edges results in the b-EDGE COVER shown

in Figure 1(d); it has lower weight than the other two edge

covers shown in Figure 1(c), and is independent of the order

in which vertices are processed.

B. Relationship between b′-MATCHING and
b-EDGE COVER

We refer to b′-MATCHING instead of b-MATCHING to

avoid ambiguity in this subsection. Given a graph G =
(V,E, b), a minimum weight b-EDGE COVER can be ob-

tained from a maximum weight b′-MATCHING [21] as

follows:

1) For each vertex v, compute b′(v) = deg(v)− b(v).
2) Compute Mopt, a maximum weight b′-MATCHING.

3) Compute a b-EDGE COVER as the complement of the

matching: Copt = E \Mopt.

In this construction, steps 1 and 3 ensure that the com-

puted b-EDGE COVER is a valid cover, and the optimal-

ity of the cover depends on step 2. If we compute an

approximate b′-MATCHING, keeping steps 1 and 3 fixed,

then the solution to the b-EDGE COVER may not necessarily

(a) (b)

(c)

(d)

Figure 1. Removing redundant edges in a b-EDGE COVER. Subfigure
(b) shows the subgraph induced by the potential redundant edges, and
Subfigures (c) and (d) show different choices for edges to remove.

be an approximate solution for b-EDGE COVER. However,

we show that if the b′-MATCHING is computed using the

GREEDY algorithm (or an algorithm that matches locally

dominant edges), then the corresponding b-EDGE COVER

will satisfy 2-approximation bounds. We use b-SUITOR in

step 2 and propose a new 2-approximation algorithm for

b-EDGE COVER, and we call it the MCE algorithm.

Since b-SUITOR is an essential part of the MCE al-

gorithm, we briefly describe a serial version of it in Al-

gorithm 2. For more details, we refer the reader to our

papers [12], [13]. This algorithm extends the SUITOR al-

gorithm of Manne and Halappanavar [17] to b′-MATCHING.

We describe a recursive version of the algorithm since it

is easier to explain, although the versions we have imple-

mented use iteration rather than recursion. Here N(u) is

the adjacency list of u, S(u) is a priority queue of suitors

of a vertex u, and T (u) is an array of vertices that u has

extended proposals to. The algorithm processes all of the

vertices, and for each vertex u, it seeks to match up to b′(u)
neighbors. In each iteration a vertex u proposes to a heaviest

neighbor v it has not proposed to yet, if the weight W (u, v)

25

Authorized licensed use limited to: Purdue University. Downloaded on September 19,2020 at 14:47:09 UTC from IEEE Xplore.  Restrictions apply. 



is heavier than the weight offered by the last (b′(v)-th) suitor

of v. If it fails to find a partner, then we break out of the

loop. If it succeeds in finding a partner x, then the algorithm

calls the function MakeSuitor to make u the Suitor of x.

This function updates the priority queue S(u) and the array

T (u). If when u proposes and becomes the Suitor of x, it

annuls the proposal of the previous Suitor of x, the vertex y,

then the algorithm looks for an eligible partner z for y, and

calls MakeSuitor recursively to make y a Suitor of z. The

vertex S(v).last has the lowest weight of the b′(v) suitors

of v; it is zero is there are fewer than b′(u) suitors. The time

complexity of the algorithm is O(m log β′).

Algorithm 2 b-SUITOR(G, b)

1: Create a min-priority heap S(v) of size b(v) for each v
2: for u ∈ V do
3: for i = 1 to b(u) do
4: x = argmax

v∈N(u)\T (u)

{W (u, v) : W (u, v)

> W (v, S(v).last)}
5: if x = NULL then
6: break

7: else
8: MakeSuitor(u, x)

return S

Algorithm 3 MakeSuitor(u, x)

1: y = S(x).last
2: S(x).insert(u)
3: T (u).insert(x)
4: if y �= NULL then
5: T (y).remove(x)
6: z = argmax

v∈N(y)\T (y)

{W (y, v) : W (y, v)

> W (v, S(v).last)}
7: if z �= NULL then
8: MakeSuitor(y, z)

IV. PARALLEL b-EDGE COVER ALGORITHMS

In this section, we describe the parallel multi-threaded

implementation of the MCE algorithm, using OpenMP for

parallelization. Both the MCE and S-LSE algorithms com-

pute identical edge covers, whether in serial or in parallel

(irrespective of the number of threads). The LSE algorithm

computes a different edge cover, but it also computes the

same cover on both serial and parallel machines. This is

a robust property of the parallel LSE, S-LSE, and MCE

algorithms considered here that the edge covers computed

are the same on serial and parallel machines. Tie-breaking

in edge weights might change the edge cover computed,

but it will not change the weight of the edge cover. Hence

repeating the experiment does not change cover weights.

All the algorithms use locks for synchronizing multiple

threads to ensure sequential consistency. We do not describe

multi-threaded shared memory versions of the S-LSE and

LSE algorithms here due to space limitations. The parallel

MCE algorithm is described in Algorithm 4. First, we

compute the b′ values for each vertex in parallel; next we call

the Parallel b-SUITOR algorithm with input b′; and finally,

we complement the matching by choosing the unmatched

edges incident on each vertex.

Algorithm 4 MCE(G(V,E,w), b)

1: EC = ∅
2: for v ∈ V in parallel do
3: b′(v) = max{0, δ(v)− b(v)}
4: M=Parallel b-SUITOR(G, b′)
5: for v ∈ V in parallel do
6: EC = EC ∪ {N(v) \M(v)}
7: return b-EDGE COVER EC

The parallel b-SUITOR algorithm is described in Algo-

rithm 5. It is the ”Delayed Partial” variant of the b-SUITOR

algorithm described in [13]. The algorithm maintains a

queue of unsaturated vertices Q for which it tries to find

partners during the current iteration of the while loop, and

also a queue of vertices Q′ whose proposals are annulled

in this iteration, and will be processed again in the next

iteration. (This is what “delayed” means; annulled vertices

are not processed in the same iteration. “Partial” means that

the adjacency lists are partially sorted to find a subset of

heaviest neighbors.) The algorithm then seeks a partner for

each vertex u in Q in parallel. It tries to find b(u) proposals

for u to make while the adjacency list N(u) has not been

exhaustively searched thus far in the course of the algorithm.

Consider the situation when a vertex u has i− 1 < b(u)
vertices outstanding proposals. The vertex u can propose

to a vertex p in N(u) if it is a heaviest neighbor in the set

N(u)\Ti−1(u) (the array T (u) from the previous step), and

if the weight of the edge (u, p) is greater than the lowest

offer that p has. In this case, p would accept the proposal

of u rather than its current lowest offer.

If the algorithm finds a partner p for u, then the thread

processing the vertex u attempts to acquire the lock for the

priority queue S(p) so that other vertices do not concurrently

become Suitors of p. This attempt might take some time to

succeed since another thread might have the lock for S(p).
Once the thread processing u succeeds in acquiring the lock,

then it needs to check again if p continues to be an eligible

partner, since by this time another thread might have found

another Suitor for p, and its lowest offer might have changed.

If p is still an eligible partner for u, then we increment the

count of the number of proposals made by u, and make u
a Suitor of p. If in this process, we dislodge the last Suitor

x of p, then we add x to the queue of vertices Q′ to be
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Algorithm 5 Parallel b-SUITOR(G, b)

Q = V ; Q′ = ∅;
S(v) = ∅, min-priority heap ∀v
while Q �= ∅ do

for vertices u ∈ Q in parallel do
i = 1;

while i <= b(u) and N(u) �= exhausted do
Let p ∈ N(u) be an eligible partner of u;

if p �= NULL then
Lock S(p);
if p is still eligible then

i = i+ 1;

Add u to S(p);
if u annuls the proposal of v then

Add v to Q′; Update db(v);
Remove v from S(p);

Unlock S(p);
else

N(u) = exhausted;

Update Q using Q′; Update b using db;

return S

processed in the next iteration. Finally the thread unlocks

the queue S(p).
We fail to find an eligible partner p for a vertex u when

we have exhaustively searched all neighbors of u in N(u),
and none offers a weight greater than the lowest offer u
has, S(u).last. In this case u has fewer than b(u) matched

neighbors. After we have considered every vertex u ∈ Q
to be processed, we can update data structures for the next

iteration. We update Q to be the set of vertices in Q′; and

the vector b to reflect the number of additional partners we

need to find for each vertex u using db(u), the number of

times u’s proposal was annulled by a neighbor.

V. APPROXIMATION BOUNDS

In this section, we show that MCE is a 2-approximation

algorithm for b-EDGE COVER, and that both MCE and

S-LSE algorithms compute the same b-EDGE COVER. We

will need a Lemma from [13]. The GREEDY algorithm for

b-MATCHING matches edges in increasing order of (static)

edge weights.

Lemma 5.1: When the GREEDY algorithm for

b-MATCHING matches an edge, it is a locally dominant

edge in the residual graph (the graph induced by the

currently unmatched edges).

Theorem 5.2: MCE is a 2-approximation algorithm for

b-EDGE COVER.

Proof: Let the optimal minimum weight

b-EDGE COVER be denoted by Copt, the complement

of an optimal maximum weight b′-MATCHING, Mopt. Also,

let the b-EDGE COVER computed by MCE be denoted by

C, which takes the complement of the 1/2-approximate

matching M , obtained by b-SUITOR.

Consider an edge e(u, v) ∈ Copt \ C, which belongs to

the optimal edge cover but not the approximate edge cover.

This implies that e(u, v) ∈ M \Mopt since the covers are

obtained by complementing the matched edges. The worst

case scenario for b′-MATCHING is when b-SUITOR matches

the edge e(u, v), and thus cannot match two other edges that

belong to Mopt, say e(x, u) ∈ Mopt and e(v, y) ∈ Mopt.

Hence e(x, u) �∈ M and e(v, y) �∈ M . Since the b-SUITOR

algorithm computes the same matching as the GREEDY

algorithm, e(u, v) must be a locally dominating edge when

it is matched, by Lemma 5.1. Thus

w(u, v) ≥ w(x, u); w(u, v) ≥ w(v, y); hence

2w(u, v) ≥ w(x, u) + w(v, y).
(1)

Since e(x, u) �∈ M and e(v, y) �∈ M , both of these edges

belong to the approximate cover C. Therefore, the weight

of C can be bounded as follows.

w(C) = w(Copt)− w(u, v) + w(x, u) + w(v, y)

≤ w(Copt)− w(u, v) + 2w(u, v) (from Eqn 1)

= w(Copt) + w(u, v).

(2)

By summing over all edges in the optimal cover that are

not included in the approximate cover, Copt \C, we obtain

w(C) ≤ w(Copt) +
∑

(u,v)∈Copt

w(u, v)

= w(Copt) + w(Copt) = 2 w(Copt).

(3)

Thus MCE is a 2-approximation algorithm for

b-EDGE COVER.

Lemma 5.3: A b-EDGE COVER computed by the MCE

algorithm does not have redundant edges.

Proof: An approximate maximum weight

b′-MATCHING M of a graph computed by the b-SUITOR

algorithm cannot have two neighboring vertices u and v,

with u having fewer than b′(u) and v having fewer than

b′(v) incident edges belonging to M . For, then we can add

the edge e(u, v) to the b′-MATCHING without violating

the matching constraints and increase the weight of the

approximate matching. But this contradicts the fact that the

b-SUITOR algorithm computes a maximal matching. By

considering the complement, a b-EDGE COVER obtained

by the MCE algorithm cannot have two super-saturated

neighboring vertices in C. Hence a cover computed by the

MCE algorithm does not have redundant edges.

Let us denote the edge cover obtained from the MCE

algorithm by Cm, and the edge cover obtained from the

S-LSE algorithm by Cl. We proceed to prove that these

edge covers are identical. Consider the graph G′ = Cm⊕Cl,

obtained by taking the symmetric difference of the two edge

covers.

27

Authorized licensed use limited to: Purdue University. Downloaded on September 19,2020 at 14:47:09 UTC from IEEE Xplore.  Restrictions apply. 



Lemma 5.4: If a vertex v in the symmetric difference

graph G′ has an equal number of edges from the covers

Cm and Cl incident on it, then the vertex v is either super-

saturated or saturated with respect to both edge covers Cm

and Cl.

Proof: Suppose that v has t ≥ 1 edges from Cm and

t ≥ 1 edges from Cl incident on it in the graph G′. Also

suppose that a set of k ≥ 0 edges incident on v in the original

graph G are included in both edge covers Cm and Cl. These

latter edges do not belong to the symmetric difference graph

G′. Then the vertex v has k+ t edges incident on it in both

Cm and Cl. If b(v) = k + t then v is saturated in both

Cm and Cl, and otherwise it is super-saturated in both edge

covers.

Lemma 5.5: If a vertex v ∈ G′ has more edges from the

edge cover Cm incident on it than from the edge cover Cl,

then v is a super-saturated vertex in Cm. Similarly if the

vertex v has more edges from the cover Cl incident on it

than from the edge cover Cm, then v is a super-saturated

vertex in Cl.

Proof: Consider the first of the two statements. Since

Cl is a b-EDGE COVER, there are at least b(v) edges in the

graph G belonging to Cl incident on v. By the condition

of the lemma, there are more than b(v) edges in the graph

G belonging to Cm incident on v, and hence it is super-

saturated with respect to the edge cover Cm. The proof of

the second statement is similar.

We proceed to show that the symmetric difference graph

G′ consists of isolated vertices, i.e., it does not have any

edges, implying that the two edge covers Cm and Cl are

identical.

Lemma 5.6: The symmetric difference graph G′ does not

have a vertex u with more Cm edges incident on it than Cl

edges.

Proof: Let Cm(u) denote the edges in Cm that are

incident on u, and consider an edge (u, v) ∈ Cm(u). If

vertex u has more Cm edges incident on it than Cl, it

must be super-saturated in Cm. Now v must be saturated

in Cm, by Lemma 5.5. (The vertex v could be saturated

or super-saturated in Cl.) The edge (u, v) incident on v
belongs to Cm, and since v is at least saturated in Cl, there

is an edge (v, x) that belongs to Cl \ Cm. Now since the

S-LSE algorithm includes locally sub-dominant edges in

the cover Cl, we have the inequality w(v, x) < w(u, v).
Now consider the approximate matching M from which the

MCE algorithm computed the edge cover Cm. Since u is

supersaturated in Cm, it has fewer than b′(u) matched edges

in M incident on it. Hence v could have proposed to its

neighbor u, but did not, since (u, v) ∈ Cm, and not to its

complement M . But the edge (v, x) ∈M , since it does not

belong to Cm. This implies that w(v, x) > w(u, v). The two

inequalities contradict each other, completing the proof.

Lemma 5.7: The symmetric difference graph G′ does not

have a vertex u that has an equal number of Cm and Cl

edges incident on it.

Proof: Consider a vertex u in the graph G′, and an edge

(u, v) that belongs to Cm \ Cl. There are four subcases to

consider with respect to the edge cover Cm.

The first case is when u and v are both super-saturated

with respect to CM , but this will make the edge (u, v)
redundant, and such edges are deleted from Cm.

The second case is when u is super-saturated and v is

saturated with respect to Cm. Since v is at least saturated in

Cl, there is an edge (v, x) ∈ Cl \Cm in G′. This edge also

belongs to the matching M from the MCE algorithm. Since

the edge (v, x) ∈ Cl and (u, v) �∈ Cl, it must be a locally

sub-dominant edge, and hence w(v, x) < w(u, v). However,

since u is super-saturated in Cm, it has fewer than b′(u)
matched edges from M incident on it. Thus v could have

proposed to u, but instead it proposed to x, implying that

w(v, x) > w(u, v). Again, the two inequalities contradict

each other.

The third case is when u is saturated in Cm and v is

super-saturated in Cm. But this case reduces to the second

case with u and v interchanged.

Finally, we have the case when u and v are both sat-

urated in Cm. Choose an edge (u, v) ∈ Cm \ Cl in G′.
Since u and v are at least saturated in Cl, we have the

edges (t, u) inCl \ Cm, and (v, x) inCl \ Cm. Now from

the S-LSE algorithm, we have w(t, u) < w(u, v) and

w(v, x) < w(u, v), which implies that the edge (u, v) is

a locally dominant edge. Thus this edge should be chosen

by the approximation algorithm for matching to include in

M , which contradicts the assumption that it belongs to the

edge cover Cm. This completes the proof.

Lemma 5.8: The symmetric difference graph G′ does not

have a vertex u with fewer Cm edges incident on it than Cl.

Proof: Let (u, v) be an edge that belongs to Cl, and let

u have fewer Cm edges incident on it than Cl. Thus u is

super-saturated with respect to Cl, and v must be saturated

in Cl, by Lemma 5.5. We consider two cases.

The first case is when v is super-saturated in Cm. Now

v is saturated in Cl implies that there are more Cm edges

incident on v than Cl edges, and this reduces to Lemma 5.6.

The second case is when v is saturated in Cl. Since v is

also saturated in Cm, an equal number of Cm and Cl edges

are incident on v, and this reduces to Lemma 5.7.

This completes the proof of the Lemma.

Theorem 5.9: The S-LSE algorithm computes the same

b-EDGE COVER as the MCE algorithm, and hence it is a

2-approximation algorithm for b-EDGE COVER.

Proof: From Lemmas 5.6, 5.7, and 5.8, the symmetric

difference graph G′ has only vertices of zero degree. There-

fore, the two edge covers are the same, i.e., Cm = Cl.

VI. PARALLEL DEPTH AND WORK

In this section we show that the SUITOR [17] and the

b-SUITOR algorithms have provably low parallel depth and
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work. The depth is the number of time steps needed by

the parallel algorithm, and the work is the total number of

operations performed by the algorithm. These are the first

results on the depth of the SUITOR and b-SUITOR algorithms

that we know of.

Theorem 6.1: The expected parallel depth of the SUITOR

algorithm that computes a 1/2-approximate 1-matching in

a graph is O(log(Δ) logm), when the weights of the edges

are chosen uniformly at random.

Proof: We begin by analyzing an algorithm related

to the SUITOR algorithm, the LOCALLY DOMINANT EDGE

algorithm. This algorithm adds an edge to the approxi-

mate matching when there are no neighboring edges of

higher weight (it becomes locally dominant), and then

deletes all of the neighboring edges. An algorithm of

Blelloch, Fineman and Shun [2] for computing an un-

weighted maximal matching in parallel uses random pri-

orities on the edges to compute the matching. Hence it

is equivalent to the LOCALLY DOMINANT EDGE algorithm

for weighted matching with random edge weights, and an

analysis of the maximal matching algorithm shows that

the LOCALLY DOMINANT EDGE algorithm has the stated

parallel depth.

Now we turn to the SUITOR algorithm and consider its

relationship to the LOCALLY DOMINANT EDGE algorithm.

Specifically we consider the “delayed” version of the al-

gorithm in which a vertex with a proposal annulled is

queued for further processing in the next iteration. In the

LOCALLY DOMINANT EDGE algorithm, an edge is matched

when it becomes locally dominant, detected by its two

endpoints pointing to each other. In the SUITOR algorithm,

each vertex u keeps track of the highest weight of the

proposal it has received so far. A neighbor of u could use

this information, if it is already available, to propose to

its next heaviest eligible neighbor without first proposing

to u. Hence if we view the computations of these algo-

rithms in rounds, in the SUITOR algorithm, a vertex gets

matched in the same or an earlier round relative to the

LOCALLY DOMINANT EDGE algorithm. Hence the SUITOR

algorithm also has O(log(Δ) logm) depth.

Theorem 6.2: The expected work in the SUITOR algo-

rithm is O(m) when the edge weights are chosen uniformly

at random.

Proof: The adjacency lists can be sorted in expected

linear time using bucket sort when the weights are chosen

randomly [8]. The SUITOR algorithm needs to go through

the sorted adjacency list of each vertex at most once.

Obtaining linear work for the maximal matching algo-

rithm of Blelloch et al. [2] is more complicated, and is

accomplished by working on a prefix of the graph whose

size is carefully chosen, which increases the depth to

O(log4 m/ log logm).
We now show that these results can be extended to the

b-SUITOR algorithm by reducing the b-MATCHING problem

to the MATCHING problem in a modified graph. We only

sketch the reduction here due to space considerations. We

replace each vertex u with b(u) vertices in the modified

graph; each edge (u, v) is replaced by a complete bipartite

graph of b(u) b(v) edges, with weights equal to the original

weight of the edge (u, v). We restrict only one of the edges

in the bipartite subgraph to be matched, but other vertices in

this subgraph could be matched to edges in other subgraphs.

We show an example of the reduction in Figure 2. The value

of b is 2. We see each edge is replaced by a complete bipar-

tite graph with the same weight. In the example graph, if we

choose (A1, B1) as a matched edge then we can not match

the edge (A2, B2). With this restriction, a 1/2-approximate

matching in the transformed graph would correspond to a

1/2- approximate b-MATCHING in the original graph.

Thus the parallel depth of b-SUITOR algorithm when

the edge weights are uniformly random becomes

O(log(Δ) log b(V )). Similarly the work becomes

O(β b(V )). (Recall that β = maxv b(v), and

b(V ) =
∑

v b(v).) For the MCE algorithm for the

b-EDGE COVER, the depth is O(log(Δ) log b′(V )); and the

work is O(β′ b′(V )).

VII. EXPERIMENTS AND RESULTS

We used an Intel Xeon E5-2697 processor based system

called Endeavor, and an IBM Power8 E880 system to

perform our experiments. The Intel machine configuration

consists of two processors, each with 18 cores running at

2.4 GHz, thus 36 cores in total, with 45 MB unified L3

cache and 128 GB of memory. The operating system is Red

Hat Enterprise Linux 6, and our code was written in C++ and

compiled using the Intel C++ Composer XE 2013 compiler

(version: 1.1.163) using the -O3 flag. The IBM E880 (9119-

MHE) computer is a large memory machine with 8 TB

memory, divided into 4 Central Processor Complexes (CPCs,

also called CECs). Each CPC has 4 sockets, each socket

has 12 cores, and each core can run up to 8 threads using

simultaneous multi-threading (SMT). The CPU clock rate is

4.262 GHz, and the cache sizes are 64K for L1, 512K for

L2 and 8MB for L3.

Our testbed consists of both real-world and synthetic

graphs. For the experiments on the Intel system, we gen-

erated two classes of RMAT graphs: (a) G500 representing

graphs with skewed degree distribution from the Graph

500 benchmark [18], and (b) SSCA from HPCS Scalable

Synthetic Compact Applications graph analysis (SSCA#2)

benchmark. We used the following parameter settings: (a)

a = 0.57, b = c = 0.19, and d = 0.05 for G500, and (b)

a = 0.6, and b = c = d = 0.4/3 for SSCA. Additionally

we consider seven datasets taken from the University of

Florida Matrix collection covering application areas such

as medical science, structural engineering, and sensor data.

We also have a large web-crawl graph [4] and a movie-

interaction network [5]. For the IBM system, we solved a
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Figure 2. Reduction from a b-MATCHING to a MATCHING. (Left) Original graph, (Right) Reduced graph for b = 2.

larger synthetic problem (SSCA) with 268 million vertices

and over 2 billion edges.

Table I shows the sizes of our testbed. There are three

groups of problems in terms of sizes: six smaller problems

with fewer than 90 million edges, five problems with 90
million edges or more, and one problem with over two

billion edges. The real-world problems have edge weights;

for the synthetic test problems, we generated three sets of

weights uniformly at random in the range 0 to intmax for

4-byte integers. We run the MCE algorithm with these sets

of weights and report results for the weight that gives the

median edge cover weight. We repeat each experiment three

times and report the average of the runtimes. The coefficient

of variation is less than 4% for all the problems. For each

triple (graph, weights, 3/2- or 2-approximation algorithm),

the edge cover computed is the same, so there is no variation

in the weight.

We run experiments with different b(v) = min{δ(v), b}
values, where δ(v) is the degree of a vertex v, and b =
{1, 2, 3, . . . , .., 10} in order to observe the impact of b(.)
values on the algorithms. For ease of notation, we write

b(v) = b rather than the minimum value mentioned earlier.

We report results for b = 5 here.

A. Results on the Intel Xeon System

1) Quality Comparison: We compare the performance

of the following algorithms: GREEDY, LSE, S-LSE and

MCE. First, we evaluate the impact of the redundant edge

removal step on the algorithms. We remind the reader that

the GREEDY and LSE algorithms compute identical edge

covers satisfying a 3/2-approximation guarantee; the S-LSE

and MCE algorithms also compute identical edge covers

that satisfy a 2-approximation guarantee. Hence we show

the percent reduction in the weight of the LSE (GREEDY)

and S-LSE algorithms after redundant edge removal relative

to their initial weight in Table II. For the smaller problems

the reduction in weight is not significant, i.e., 1.21% and

Problems |V | |E| Avg. Deg.
Fault 639 638,802 13,987,881 44
mouse gene 45,101 14,461,095 641
Serena 1,391,349 31,570,176 45
bone010 986,703 35,339,811 72
dielFilterV3real 1,102,824 44,101,598 80
Flan 1565 1,564,794 57,920,625 74

kron g500-logn21 2,097,152 91,040,932 87
hollywood-2011 2,180,759 114,492,816 105
G500 21 2,097,150 118,595,868 113
SSA21 2,097,152 123,579,331 118
eu-2015 11,264,052 264,535,097 47

SSCA28 268,435,456 2, 136,323,325 16

Table I
THE STRUCTURAL PROPERTIES OF OUR TESTBED FOR b-EDGE COVER,

SORTED IN ASCENDING ORDER OF EDGES.
Problems LSE S-LSE
Fault 639 0.68% 1.33%
mouse gene 0.95% 1.26%
Serena 0.97% 1.31%
bone010 1.97% 0.96%
dielFilterV3real 1.88% 4.11%
Flan 1565 1.33% 5.43%
Geo. Mean: 1.21% 1.90%
kron g500-logn21 8.41% 17.02%
hollywood-2011 15.52% 19.74%
G500 21 11.65% 10.16%
SSA21 12.30% 14.90%
eu-2015 9.47% 19.31%
Geo. Mean 11.21% 15.79%

Table II
REDUCTION IN WEIGHT DUE TO REDUNDANT EDGE REMOVAL.

1.90% on average for the LSE and S-LSE algorithms,

respectively. But for larger problems, the weight reduction

is significant, 11% and 16% for the LSE and S-LSE

algorithms, respectively. Note that the S-LSE algorithm

benefits more from this post-processing.

We obtain lower bounds on the weights of

b-EDGE COVERS for a subset of the problems, using

the relaxation of an integer linear program, solved with a

Lagrangian optimization method [10]. This computation
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Problems Lagrange Cover wt %Gap %Increase
bound LSE 3/2 (LSE) 2 (MCE)

Fault 639 9.53E+15 9.77E+15 2.55% 1.13%

mouse gene 2672.19 2898.04 8.45% 6.55%

Serena 6.93E+15 7.09E+15 2.36% 1.51%

bone010 8.21E+08 8.34E+08 1.63% 0.96%

dielFilterV3real 252.055 259.049 2.77% 0.11%

Flan 1565 5.38E+09 5.49E+09 2.02% 4.41%

SSA21 1.67E+12 1.69E+12 1.20% 4.89%

hollywood-2011 891355 922225 3.46% 1.74%

kron g500-logn21 1.33E+06 1.35E+06 1.22% 13.53%
G500 21 1.35E+06 1.33E+06 1.54% 3.26%

eu-2015 9.67E+06 1.11E+07 14.62% 2.33%

Geo. Mean 2.14%

Table III
LOWER BOUND ON THE WEIGHT OF EDGE COVERS, AND THE INCREASE

IN WEIGHT COMPUTED BY THE 2-APPROXIMATION ALGORITHMS

RELATIVE TO THE 3/2-APPROXIMATION ALGORITHMS (b = 5).

also uses a shared memory multi-threaded algorithm

on 20 cores of an Intel Xeon. All the reported bounds

are computed within an hour. The maximum number of

iterations is set to 10, 000 and the maximum run time is set

to 2 hours. If there is no improvement in the solution in

1, 000 consecutive iterations, the program is terminated.

In Table III, the second column shows the lower bound,

the third column shows weight of the cover from the LSE

algorithm, the fourth column shows the gap between the

third and second columns, and the fifth column shows the

weight difference between the LSE and MCE algorithms.

The results show that the weights computed are close to the

minimum values, and that the two approximations are close

to each other in practice. The gap is relatively large for the

mouse_gene and eu-2015 problems; unfortunately we

cannot tell if the Lagrange bound is lower than the optimal

edge cover weight, or if the LSE algorithm computes an

edge cover with weight greater than the optimal. One of

these is a relatively dense graph, and the other is one of

the largest graphs in the test set, and the Lagrange bound

computation might obtain higher values if run longer.

Generally we can conclude that if an application does

not require the optimal b-EDGE COVER, we may use any of

these approximation algorithms, and the faster and scalable

algorithms are to be preferred. We identify these in the next

set of experiments.

2) Serial Performance: We compare the serial run time

performance of the four algorithms in Figure 3. Note that

the times are plotted on a logarithmic scale; we cut off the

run times after one hour. For large instances, we observe

that usually the LSE algorithm is 2 − 5× faster than the

GREEDY algorithm, the S-LSE algorithm is 2 − 4× faster

than the LSE algorithm, and the MCE algorithm is roughly

one order of magnitude faster than the S-LSE algorithm.

The difference increases with increasing values of b(v).
It is clear from the results in Figure 3 that the MCE

algorithm is the fastest serial approximation algorithm for

the b-EDGE COVER problem, and so we use its performance

to evaluate the parallel shared memory performance next.

Number of Threads
1 CPC 1 12 24 36 48 96 192 384
Runtime 3107 303 205 91 71 35 24 22

Number of Threads
4 CPC 1 12 24 48 96 191 382 764
Runtime 3107 303 205 71 38 20 19 23

Table IV
PARALLEL RUN-TIMES FOR SSA28 ON TWO CONFIGURATIONS OF THE

IBM POWER8 USING THE MCE ALGORITHM. THE FIRST SET USED 1
CPC AND ONE THREAD PER CORE UP TO 48 THREADS; AFTER THAT,
SMT WAS EMPLOYED TO INCREASE THE NUMBER OF THREADS. ON

THE SECOND SET, WE USED 4 CPCS, 191 CORES, ONE THREAD PER

CORE INITIALLY; AFTER 191 THREADS, SMT WAS EMPLOYED.

3) Parallel Performance: We have evaluated the perfor-

mance of MCE, S-LSE, and LSE algorithms using 36 cores

of the Xeon ES-2697 multiprocessor. Each core is hyper-

threading enabled with two threads per core, i.e., we have a

total of 72 threads. Unfortunately, for these problems, hyper-

threading does not help, and we use 36 threads to compute

the run time performance of the LSE and S-LSE algorithms

relative to the MCE algorithm, and report this in Figure 4. A

runtime value greater than 1 implies that the MCE algorithm

is faster. We observed only one case, SSA21 with b(.) = 1,

where the S-LSE algorithm beats the MCE algorithm. But

with higher b(.) values the MCE algorithm becomes the

fastest for all problems, by a factor of 10 relative to the

LSE and S-LSE algorithms.

We present strong scaling results for the MCE algorithm

in Figure 5. We observe that for smaller problems, the MCE

algorithm does not scale beyond 18 threads, but for most of

the larger problems, the algorithm shows a speedup of 35×
with 36 threads.

B. Results on the IBM System

Now we experiment with a 2 billion edge graph on a TB-

scale shared memory machine using the MCE algorithm.

The IBM Power8 E880 system is organized into 4 Central

Processor Complexes (CPCs); each CPC has four sockets,

each socket has 12 cores, and each core can run a maximum

of 8 threads using hyperthreading. We computed a 5-edge

cover in the SSCA28 graph, with weights chosen randomly

as for the Intel test, and obtained an edge weight of 4.79e15
for all experiments since they compute the same edge cover.

We conducted two experiments: The first runs one thread on

each core of a single CPC, and then uses SMT on every core

to obtain more threads. For SSCA28, a speedup of 131 is

obtained on 192 threads, showing that four-way SMT on

a CPC is quite effective for this problem. In the second

experiment, we ran one thread each on the 191 cores of

the 4 CPCs (one core is reserved for system use), and

after that used SMT. In this case, the best speedup of 153

was obtained for one thread on 191 cores for this problem.

The incremental increase in speedup for larger numbers of

threads was small, and performance seems to be limited by

memory latency since the code does not exceed the memory

bandwidth available.
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Figure 3. Serial run times of four approximation algorithms for b-EDGE COVER on the Intel Xeon.

Figure 4. Relative runtimes of LSE and S-LSE algorithms w.r.t. MCE algorithm on 36 cores of an Intel Xeon.

VIII. CONCLUSIONS

We have shown how parallel algorithms for

b-EDGE COVERS can be designed using the approximation

paradigm. The MCE algorithm is faster than other

approximation algorithms for this problem by an order of

magnitude or more; it also scales to compute edge covers

in a graph with billions of edges using hundreds of threads

on a Terabyte-scale shared-memory multiprocessor. By

computing lower bounds, the edge covers are seen to have

weights within a few percent of the minimum values.
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